Finds the prior parameter that maximizes the marginal likelihood given the prediction.
calc.a(y, mu, sf) calc.b(y, mu, sf) calc.k(y, mu, sf)
| y | A vector of observed gene counts. |
|---|---|
| mu | A vector of predictions from |
| sf | Vector of normalized size factors. |
A vector with the optimized parameter and the negative log-likelihood.
calc.a returns a prior alpha parameter assuming constant
coefficient of variation. calc.b returns a prior beta parameter
assuming constant Fano factor. calc.k returns a prior variance
parameter assuming constant variance.